
 

   
 

 

  

 

 
 

 

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 

4. Title and Subtitle 
Computational Imaging for Improving Vehicle Safety 

5. Report Date 
July 31, 2024 
6. Performing Organization Code 

7. Author(s)
Aswin Sankaranarayanan, https://orcid.org/ 0000-0003-0906-4046 
Vijayakumar Bhagavatula, https://orcid.org/ 0000-0001-7126-6381 

8. Performing Organization Report 
No. 

9. Performing Organization Name and Address 
Carnegie Mellon University, 5000Forbes Avenue, Pittsburgh, PA 15213, 
USA. 

10. Work Unit No. 

11. Contract or Grant No. 
Federal Grant No. 69A35523244811 

12. Sponsoring Agency Name and Address 
Safety21 University Transportation Center 
Carnegie Mellon University 
5000 Forbes Avenue 
Pittsburgh, PA 15213 

13. Type of Report and Period 
Covered 
Final Report (July 1, 2023-June 30, 
2024) 
14. Sponsoring Agency Code 
USDOT 

15. Supplementary Notes 
16. Abstract 
This project investigates the design and deployment of sensors and associated algorithms for handling harsh imaging 
conditions. We are interested in depth perception in rain, snow and fog. By expanding the depth range at which 
objects can be reliably detected, especially in dense fog, the project will facilitate a higher level of safety for 
vulnerable road users. 

17. Key Words Depth perception; bad weather 18. Distribution Statement 

19. Security Classif. (of this report) 20. Security Classif. (of this 
page) 

21. No. of 
Pages
16 

22. Price 

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized 



 

Computational Imaging for Improving Vehicle Safety 

PI: Aswin Sankaranarayanan
OrcID: 0000-0003-0906-4046 

Co-PI: Vijayakumar Bhagavatula
OrcID: 0000-0001-7126-6381 

Contract: #69A35523244811 

Final Project Report - July 31, 2024 

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the 

information presented herein. This document is disseminated in the interest of information exchange. This report 

is funded, partially or entirely, by a grant from the U.S. Department of Transportation’s University Transportation 

Centers Program. The U.S. Government assumes no liability for the contents or use thereof. 



Computational Imaging for Improved Vehicle Safety 

Contents 

1 Introduction 1 

2 Structured light under fog 3 

2.1 Line scanning in the absence of fog . . . . . . . . . . . . . . . . . . . . . 3 

2.2 Measurements under fog . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

3 Structured light scanning with Single-Photon Detectors 6 

3.1 Model for SPAD measurements . . . . . . . . . . . . . . . . . . . . . . . 6 

3.2 Measurements under fog . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

3.3 Performance of SPAD-based structured light . . . . . . . . . . . . . . . . 9 

4 Results 9 

5 Conclusions 11 

i 



List of Figures 

1 Fog leads to loss of contrast in image sensor measurements. Shown above 

are simulated images of a scene in clear and foggy conditions. Such loss 

of contrast afects subsequent downstream processing algorithms like cor-

respondence estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

2 In a line-scanning SL system, the ray is from camera pixel, and plane is 

formed by center of projection and a column of the projector. . . . . . . 4 

3 Line scanning in the presence of fog results in a strong scattering in the 

captured image. Shown on the left is a simulated image captured by the 

sensor in the presence of scattering where we observe the line/stripe of the 

target of interest but also light scattered of the medium. The projector 

is to the left of the camera. (right) Image intensity observed along an 

epipolar line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

4 Profle of line scan measurements along an epipolar line with increasing 

amount of scattering from left to right. This results in the impulse associ-

ated with the target to reduce in intensity. . . . . . . . . . . . . . . . . . 6 

5 An image from a SPAD sensor. Each pixel reports a binary value indicating 

whether or not photons arrived at the pixel during the exposure time. . . 7 

6 Profle of line scan measurements along an epipolar line with SPAD mea-

surements. (left) True intensities (or photon arrival rates) on an epipolar 

line on the SPAD. (center) SPAD measurements corresponding to this 

epipolar line across multiple exposures. Note that the location of the peak 

associated with the stripe is clearly visible. (c) Estimates of the photon 

arrivals with diferent number of SPAD exposures. With as little as ten 

exposures we can robustly estimate the peak associated with the stripe. . 8 

7 Estimated disparities from simulations of the proposed SPAD-based SL 

setup. (a) True disparity for the scene. (b) Raw estimated disparities 

from ten exposures per projector column. (c) Median fltered disparity 

output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

8 Disparity error as a function of number of SPAD exposures. . . . . . . . 10 

ii 



9 Estimated disparities with (left) fve, (center) ten, and (right) twenty 

SPAD measurements with top row showing raw estimates and bottom row 

showing fltered ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

iii 



1 Introduction 

The last decade has seen increased adoption of technologies that enable assisted and 

autonomous driving systems.. This spans simple aids in driving like parking assists, 

automatic speed limit detection, and lane monitoring to more complicated features like 

collision avoidance and lane centering, with the eventual promise of fully automated 

driving. A key enabler for many of these features is the ability to maintain awareness 

of the scene around the vehicle using a suite of visual and non-visual sensors, including 

cameras, and LIDARs. In many ways, much of today’s assisted systems rely critically on 

being able robust sense an image and depth map of the world in realtime, and processing 

it to enable the desired feature. 

Adverse weather conditions like fog and rain present immediate challenges to the oper-

ation of assisted and autonomous driving systems. Rain, snow and fog present challenging 

operating scenarios for camera and LIDAR-based depth perception. In these scenarios, 

the medium between the camera/sensor and the target (be it a pedestrian, a vehicle or a 

road feature) can no longer be assumed to be “free space”. In particular, the presence of 

fog or rain or snow results in the medium scattering light, which has undesirable efects 

on measurements made by a sensing systems. 

For passive cameras, typically used in stereo-based depth estimation, imagery in ad-

verse weather results in a loss of contrast. This loss of contrast arises from two sources: 

frst, the presence of particulate matter in the medium (be it fog, rain or snow) scat-

ters light from the sun or from the headlights, which adds a haze on the measurements; 

and second, the light from targets of interest are progressively scattering en route to the 

cameras, which reduces their intensity. Together, this results in a haze in the measure-

ments that makes details harder to identify, with objects that are further away afected 

signifcantly more (see Figure 1). Since stereo-based depth estimation relies on match-

ing textured regions across views, this loss of contrast makes correspondence across views 

hard to establish. In turn, this reduces the efectiveness of stereo-based depth estimation. 

LIDAR, on the other hand, works on the principle of time of fight, measured by 

pulsing a laser and using a single-photon avalanche diode (SPAD) to measure the arrival 

time of the frst returning photon. When the medium between the laser and the target is 

free space, we can expect the frst-returning photon to be from the target. However, fog 

and rain generate spurious photon arrivals so that the frst-returning photon is from the 
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Figure 1: Fog leads to loss of contrast in image sensor measurements. Shown above are 

simulated images of a scene in clear and foggy conditions. Such loss of contrast afects 

subsequent downstream processing algorithms like correspondence estimation. 

medium and not the target. This severely compromise the quality of depth measurements. 

There are some LIDAR-based depth systems that look at the distribution of time of 

arrivals at each pixel to identify the photons from the target; such systems are capable 

of handling moderate amount of rain or fog. However, the electronics bandwidth and 

storage requirements of such techniques are formidable when we want a large feld of 

view and high frame rates. 

Non-visual systems such as radar are inherently robust to such weather events; how-

ever, their angular resolution is often orders of magnitude smaller than that of cameras 

and LIDARs—a fundamental feature of this modality stemming from its large wave-

length. As a consequence, there is an immediate need for enabling sensing systems that 

are inherently robust to adverse weather with the depth and angular resolutions typical 

to visual sensors. 

Approach. The project aims to improve depth sensing in bad weather—fog, smoke and 

rain—where the performance of LIDAR and stereo based scanners sufers. Our solution 

to this was based on two ideas: frst, eliminating light paths that are caused by scattering 

of light in the medium (i.e., fog, rain, smoke) improves contrast; and second, using single-

photon detectors (SPADs) we can build a 3D structured light scanner that provides depth 

maps at hundreds of frames per second. Specifcally, our main insight is that improved 

depth perception can be improved via careful imaging and algorithmic design that allows 

blocking of photons from the medium while preserving those from the scene of interest. 
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Improving perception in dense scattering media by blocking undesired photons requires 

imaging systems that can selectively choose between favorable light paths in the scene 

against unfavorable ones. Our specifc proposition for this work is to build a structured 

light system with a high-speed projector/light scanner and an ultra-high speed SPAD 

array. With this setup, we will design patterns that will avoid single-bounce light paths 

of the medium. This approach is central to very successful microscopy techniques such as 

confocal imaging, and difuse optical tomography, for imaging in highly scattering media 

like biological tissue. We will leverage this core intuition but expand it to macroscopic 

imaging in the real world. 

The proposed system is a variant of a traditional structured light system consisting of 

a projector and a camera. For the projector, we use a laser-based line scanner that scans a 

line across the scene at a very high speed. For the camera, we replace the commonly-used 

CMOS image sensor with a single-photon avalanche diode (SPAD) sensor. This SPAD 

sensor is also an array of pixels, except in each image, each of its pixels records a binary 

value indicating whether or not a photon arrived during the exposure time. While this 

seems rather limiting, the sensor operates at extremely high speeds—upwards of 100 kHz. 

This allows us to scan the scene at a high speed and computationally identify photons 

from the target from those from the medium. 

At its culmination, this project will enhance the range of scenarios where an au-

tonomous vehicle can safely operate in. Specifcally, it will lead to increased range in 

depth perception in fog and rain, which will increase safety in the use of assisted and 

autonomous driving. 

2 Structured light under fog 

We briefy describe structured light-based scanning and the infuence of fog on its mea-

surements. A detailed overview of structured light techniques can be found in prior art. 

2.1 Line scanning in the absence of fog 

Structured light (SL) [4] is one of the most popular techniques for 3D shape acquisition. 

An SL system uses active illumination, typically via a projector, to obtain robust cor-

respondences between pixels on the projector and a camera, and subsequently, recovers 
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the scene depth via triangulation. In contrast to passive techniques like stereo, the use 

of active illumination enables SL systems to acquire depth even for textureless scenes at 

a low computational cost. 

The simplest SL method is point scanning [3], where the light source illuminates 

a single scene point at a time, and the camera captures an image. Correspondence 

between camera and projector pixels is determined by associating the brightest pixel in 

each acquired image to the pixel illuminated by the projector. However, this approach 

requires a large number (N2) of images to obtain a depth map with N × N pixels. 

In order to reduce the acquisition time, stripe or line scanning technique was proposed 

where the light source emits a planar sheet of light [11, 1, 2]. In line scanning, the projector 

illuminates a single column at a time and sequentially scans its feld of view through all 

of its columns. Since the pre-image of a line on the projector’s image plane is a plane, 

this results in a plane in the real world being illuminated at a given time instant. This 

plane intersects with the 3D world in front of the imaging system, illuminating what 

is typically a curve or a collection of disjoint curves; the specifcs of this depends on 

the geometry of the scene. An image sensor placed beside the projector observes the 

illuminated points, importantly from a diferent perspective from that of the projective; 

this allows for triangulation between the pre-image of each of the points observed in the 

image—a line in 3D space—with the plane illuminated by the projector. That is, consider 

a scene point that lies on the emitted light plane. Its depth can be estimated by fnding 

the intersection between the light plane, and the ray joining the camera center and the 

camera pixel. This is illustrated in Figure 2(a). 

We can further reduce the acquisition time by using more sophisticated temporal 

coding techniques; for example, binary codes [7], Gray codes [10, 5] and sinusoidal phase 

shifting [12]. Underlying all these methods is the idea that, for a calibrated camera-

projector pair, we only need to measure disparity, i.e., a 1D displacement map. Thus, we 

need to perform coding along only one dimension of the projector image plane, thereby 

achieving signifcant speed-ups over point-scanning systems. For example, several struc-

tured light patterns have a 1D translational symmetry, i.e., in the projected patterns, 

all the pixels within a column (or a row) have the same intensities. An exception is 

‘single-shot’ structured light techniques that use patterns with 2D intensity variations, 

for example, sparse 2D grid of lines [8], 2D color encoded grids [9], 2D pseudo-random 
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Figure 2: In a line-scanning SL system, the ray is from camera pixel, and plane is formed 

by center of projection and a column of the projector. 

binary code [15], and 2D random dots (used in the frst generation Microsoft Kinect depth 

sensing cameras [6]). 

Note that, since the medium between the imaging system and the scene is considered 

to be free space, i.e., allows light to freely propagate without any additional efects, 

the camera only sees points that are illuminated on (potential) objects of interest. A 

caveat here is that we are not considering inter-refections or sub-surface scattering efects 

induced by the object itself. 

2.2 Measurements under fog 

In the presence of fog, the medium scatters light and so the image formed on the camera 

is no longer that of the single stripe on the scene. Instead we see scattered light from the 

fog as well. Figure 3(a) shows a simulation of such an image for a scene in the presence 

of fog. Here, we observe that in addition to the illuminated stripe there is a strong haze 

to its left arising from the fog itself due to the projector being placed to the left of the 

camera. 

Digging deeper, if we look along a horizontal slice of the image—or an epipolar line— 

we observe the profle seen in Figure 3(b), which shows that an exponentially decaying 

curve followed by an impulse. The impulse marks the stripe or the intersection of the 
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(a) Image observed on a CMOS sensor (b) Intensity along an epipolar line

Figure 3: Line scanning in the presence of fog results in a strong scattering in the captured 

image. Shown on the left is a simulated image captured by the sensor in the presence 

of scattering where we observe the line/stripe of the target of interest but also light 

scattered of the medium. The projector is to the left of the camera. (right) Image 

intensity observed along an epipolar line. 

Figure 4: Profle of line scan measurements along an epipolar line with increasing amount 

of scattering from left to right. This results in the impulse associated with the target to 

reduce in intensity. 

object of interest and the projector illuminated plane. The exponential decay is the 

contribution of scattering from the fog and its specifc shape is explained from Beer-

Lambert’s law for isotropic scatterers. 

The nature of the scattering also afects the profles we can expect to see. Thicker 

mediums scatter more light, causing increased haze while reducing the intensity on the 

target. Figure 4 shows the efect of this with increasing scattering parameters. 

One of the challenges here is that, in the presence of read noise, we will need sufciently 
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Figure 5: An image from a SPAD sensor. Each pixel reports a binary value indicating 

whether or not photons arrived at the pixel during the exposure time. 

large exposure to estimate the location of the impulse, which essentially slows down line 

scanning techniques. We next show that moving to a SPAD image sensor—a device that 

counts photons without any read noise penalty—can efectively address this. 

3 Structured light scanning with Single-Photon De-

tectors 

Our work relies on a Single-Photon Structured Light system that are based on single-

photon detectors, such as Single Photon Avalanche Diodes (SPADs). SPADs can be 

operated at very high speeds when detecting photons and not their time-of-arrivals. In 

this ‘photon detection’ mode, the measurements are binary-valued indicating whether or 

not a photon arrival occurred during a given acquisition time. For instance, a recently 

developed SPAD array [14] can capture ∼ 105 binary frames at 1/8-th megapixel res-

olution. Our key observation is that the binary measurements, normally considered a 

limitation due to limited information, are sufcient for a large family of SL techniques 

where the coding is binary as well. 
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3.1 Model for SPAD measurements 

Consider a SPAD pixel array observing a scene. The number of photons N arriving at a 

pixel x during an exposure time texp is modelled as a Poisson random variable: 

)k −Φ(x) texp(Φ(x) texp e 
Pr {N = k} = , (1) 

k! 

where Φ(x) is the fux; for simplicity, we assume a 100% quantum efciency and use 

the term “fux” interchangeably with the arrival rate of photo-electrons. During each 

exposure, a pixel detects at most one photon, returning a binary value B(x) such that 

B(x) = 0 if the pixel receives no photons; otherwise, B(x) = 1. Hence, B(x) is a Bernoulli 

random variable [16] with 

−(Φ(x)+rq )texpPr {B(x) = 0} = e , (2) 

where rq is the dark current rate—the rate of spurious counts unrelated to incident 

photons. Figure 5 shows an example of a SPAD binary measurement. 

Recently, we developed a technique for SPAD-based SL [13] to enable 3D scanning at 

high-frame rates and low-light levels. This technique, called “Single-Photon SL”, works 

by sensing binary images that indicates the presence or absence of photon arrivals during 

each exposure; the SPAD array is used in conjunction with a high-speed binary projector, 

with both devices operated at speeds as high as 20 kHz. In a typical SL scan, the scene is 

illuminated with a sequence of 2D binary patterns from a projector. The SPAD captures 

a binary frame for each pattern. Each SPAD pixel receives a binary code over time, 

from which we estimate the projector column observed at the pixel—an operation that 

is critical for the success of any SL technique. However, the binary images sensed by the 

SPAD array are heavily infuenced by photon noise and are easily corrupted by ambient 

sources of light (as seen in Figure 5). To address this, we developed novel temporal 

sequences using error correction codes, and further, design the codes to be robust to 

short-range efects like projector/camera defocus and resolution mismatch between the 

two devices. Single-Photon SL is capable of 3D imaging in challenging scenarios involving 

low-albedo objects, strong ambient illumination as well as fast-moving objects. However, 

it is not geared to handle scattering by the medium as is the case with imaging in fog or 

rain. 
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Figure 6: Profle of line scan measurements along an epipolar line with SPAD measure-

ments. (left) True intensities (or photon arrival rates) on an epipolar line on the SPAD. 

(center) SPAD measurements corresponding to this epipolar line across multiple expo-

sures. Note that the location of the peak associated with the stripe is clearly visible. (c) 

Estimates of the photon arrivals with diferent number of SPAD exposures. With as little 

as ten exposures we can robustly estimate the peak associated with the stripe. 

3.2 Measurements under fog 

To build a robust SL scanner under fog, we revert to stripe/line scanning, where the 

projector illuminates a single column. As elaborated in Figures 3 and 4 this results 

in each epipolar line observing the stripe as well as haze due to scattering. Given the 

image formation model underlying SPADs, each measurement of the SPAD sensor would 

simply provide a binary image indicating photon arrival events; critically, the probability 

of detecting a photon is still proportional to the relative intensities. If we take multiple 

measurements, then due to photon noise, we get diferent realizations of the underlying 

Poisson random variable. Aggregating measurements and averaging them provides an 

estimate of the true photon arrival rates (or the image sensed by a traditional image 

sensor). 

Figure 6 shows this principle in action. We observe that while an individual binary 

frame looks random, aggregating multiple measurements by averaging them provides a 

robust estimate of the peak. The reason for this stems from the sharp transition at the 

peak that is easily observable from the averaged measurements. In fact, our experiments 

show that with as little as ten exposures, our approach obtains the peak accurately. 
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(a) Ground truth disparity (b) Raw estimated disparity (c) Median filtered disparity

Figure 7: Estimated disparities from simulations of the proposed SPAD-based SL setup. 

(a) True disparity for the scene. (b) Raw estimated disparities from ten exposures per 

projector column. (c) Median fltered disparity output. 

3.3 Performance of SPAD-based structured light 

We can now characterize the time resolutions we can obtain with commercially-available 

SPAD sensors and projectors. Laser projectors can easily scan scenes in tens to hundreds 

of hertz, and as such as not bottlenecks for our envisioned system. The SPAD prototype 

we plan to use operates at 100 kHz. If we average 10 measurements for each projector 

column, and have 500 projector columns to scan (matching the resolution of the 512 × 

512 pixel array of the SPAD), then our system is still capable of delivering dense depth 

maps at 20 fps. 

4 Results 

We simulated a structured light-based SPAD imaging system similar to [13] for our pro-

posed stripe/line-scanning system. We simulated these on a scene from the Middlebury 

dataset. 

Figure 7 shows reconstructed depth maps with ten SPAD exposures per projector 

column. The raw estimated disparity values are corrupted due to the inherent stochas-

ticity of photon noise. However a simple median flter applied to the estimated disparity 

signifcantly suppresses these artifacts. 

Figure 8 characterizes disparity estimation errors as a function of number of SPAD 

exposures. As we expect, a single SPAD measurement does provide a robust estimate of 

the stripe given that it is impossible to classify a photon from the fog versus the target. 

10 



Figure 8: Disparity error as a function of number of SPAD exposures. 

As we gradually increase the number of measurements, the estimation error in log-scale 

decreases linearly with the number of measurements, indicating exponential reduction in 

the accuracy of the technique. With ten measurements, the absolute disparity error drops 

below a single pixel and to a tenth of a pixel with twenty measurements. This suggests 

that high-speed robust line striping is indeed possible in the presence of fog. 

We validate this further with by repeating the results of Figure 7 with diferent number 

of measurements. Our results validate the increased robustness of disparity estimation 

from a small set of measurements. 
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Figure 9: Estimated disparities with (left) fve, (center) ten, and (right) twenty SPAD 

measurements with top row showing raw estimates and bottom row showing fltered ones. 

5 Conclusions 

In this work, we have devised a novel 3D scanner for robust depth map acquisition in the 

presence of rain, fog or snow. Specifcally, we have implemented a simulation platform for 

the measurements made by a SPAD sensor under fog. We simulate the gross behavior of 

the scattering using the Beer-Lambert law, which provides the photon arrival rate at the 

sensor. Specifcally, we assume that a projector is illuminating one or a few planes in the 

world. For each of these planes, we frst estimate its intersection with the scene (described 

in terms of a depth map), and simulate the image formed on the sensor, including the 

efect of scattering in the medium (fog). The measurements of the SPAD sensor reports 

binary frames indicating the presence or absence of photon arrival. We have implemented 

an algorithm for estimating depth from a collection of these binary SPAD measurements, 

relying on the fact that the nature of scattered light is exponentially decaying and it ends 

with a discontinuity (in the form of a peak) when it intersects with the object. We use 

this to robustly estimate the peak along each epipolar scan line. With these simulations, 

we have the following result. Suppose we illuminate a single plane in the scene; with as 

little as ten binary SPAD images we can reliably estimate the depth of the scene points 
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illuminated. This suggests that high-speed 3D scanning is indeed possible with out setup. 

In terms of future directions, a key next step is to demonstrate performance of the system 

using a real-world prototype, which we hope to perform in the upcoming months. 
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